On Some Complete Monotonicity of Functions Related to Generalized k − Gamma Function

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete monotonicity involving some ratios of gamma functions

In this paper, by using the properties of an auxiliary function, we mainly present the necessary and sufficient conditions for various ratios constructed by gamma functions to be respectively completely and logarithmically completely monotonic. As consequences, these not only unify and improve certain known results including Qi's and Ismail's conclusions, but also can generate some new inequali...

متن کامل

On the Complete Monotonicity of Quotient of Gamma Functions

In this paper, we concern with a conjecture involving the ratio of two gamma functions posed by Qi, Guo and Chen [Math. Inequal. Appl. 9(3)(2006), 427-436]. We also generalize a result of Qi [Theorem 2, J. Comput. Appl. Math. 214 (2008), 610-616]. Mathematics subject classification (2010): 33B15, 26A48, 26A51.

متن کامل

Integral representation of some functions related to the Gamma function

We prove that the functions Φ(x) = [Γ(x + 1)]1/x(1 + 1/x)x/x and log Φ(x) are Stieltjes transforms. 2000 Mathematics Subject Classification: primary 33B15; secondary 26A48

متن کامل

SOME MONOTONICITY PROPERTIES OF GAMMA AND q-GAMMA FUNCTIONS

We prove some properties of completely monotonic functions and apply them to obtain results on gamma and q-gamma functions.

متن کامل

Complete monotonicity of some functions involving polygamma functions

In the present paper, we establish necessary and sufficient conditions for the functions x ̨ ̨ψ(i)(x + β) ̨ ̨ and α ̨ ̨ψ(i)(x + β) ̨ ̨ − x ̨ ̨ψ(i+1)(x + β) ̨

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematics

سال: 2021

ISSN: 2314-4785,2314-4629

DOI: 10.1155/2021/9941377